Improving Discriminative Training for Robust Acoustic Models in Large Vocabulary Continuous Speech Recognition

نویسندگان

  • Janne Pylkkönen
  • Mikko Kurimo
چکیده

This paper studies the robustness of discriminatively trained acoustic models for large vocabulary continuous speech recognition. Popular discriminative criteria maximum mutual information (MMI), minimum phone error (MPE), and minimum phone frame error (MPFE), are used in the experiments, which include realistic mismatched conditions from Finnish Speecon corpus and English Wall Street Journal corpus. A simple regularization method for discriminative training is proposed and it is shown to improve the robustness of acoustic models gaining consistent improvements in noisy conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysing Recognition Errors in Unlimited-Vocabulary Speech Recognition

We analyze the recognition errors made by a morph-based continuous speech recognition system, which practically allows an unlimited vocabulary. Examining the role of the acoustic and language models in erroneous regions shows how speaker adaptive training (SAT) and discriminative training with minimum phone frame error (MPFE) criterion decrease errors in different error classes. Analyzing the e...

متن کامل

Continuous Speech Recognition Using Support Vector Machines

Hidden Markov models (HMMs) with Gaussian mixture observation densities are the dominant approach in speech recognition. These systems typically use a representational model based on maximum likelihood decoding and expectation maximization-based training. Though powerful, this paradigm is prone to overfitting and does not directly incorporate discriminative information. We propose a new paradig...

متن کامل

Selective MCE training strategy in Mandarin speech recognition

The use of discriminative training methods in speech recognition is a promising approach. The minimum classification error (MCE) based discriminative methods have been extensively studied and successfully applied to speech recognition [1][2][3], speaker recognition [4], and utterance verification [5][6]. Our goal is to modify the embedded string model based MCE algorithm to train a large number...

متن کامل

Large Margin Training of Acoustic Models for Speech Recognition

LARGE MARGIN TRAINING OF ACOUSTIC MODELS FOR SPEECH RECOGNITION Fei Sha Advisor: Prof. Lawrence K. Saul Automatic speech recognition (ASR) depends critically on building acoustic models for linguistic units. These acoustic models usually take the form of continuous-density hidden Markov models (CD-HMMs), whose parameters are obtained by maximum likelihood estimation. Recently, however, there ha...

متن کامل

Minimum word error based discriminative training of language models

This paper considers discriminative training of language models for large vocabulary continuous speech recognition. The minimum word error (MWE) criterion was explored to make use of the word confusion information as well as the local lexical constraints inherent in the acoustic training corpus, in conjunction with those constraints obtained from the background text corpus, for properly guiding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012